
CS352 Lecture - Database Application Development

Last revised February 8, 2017
Objectives:

1. To discuss possible architectures for a client-server application that uses a
database

2. To discuss use of embedded SQL

Materials:

1. Projectable of three and two tier architectures
2. Projectable of book figure 9.9
3. Projectable of db2 create procedure
4. Projectable of JDBC code example + variant using a prepared statement
5. Projectables of SQLJ example - Java with SQL in it + pure Java

I. Introduction

A. Thus far, we have used SQL as the means of actually accessing/modifying
the database.

B. Of course, the majority of people accessing information stored in a database
don't do so directly using SQL. Instead, they run an application program.
While the application program may store its data in various kinds of
application-specific files (the file processing approach), frequently it stores
its information in a “generic” (e.g. SQL-based) database.

Generic
Database

SQL

SQLApplication
Program

vs
Generic
Database

1

Examples of the latter?

ASK

Numerous - many web-based ecommerce systems use a database to actually
store the data; also bank tellers, insurance agents ...

II. Architectural Alternatives

A. When a user interacts with an application program that stores its data in a
generic database, there are three kinds of tasks that are performed:

1. Database tasks - tasks related to accessing/modifying information in the
database (e.g. tasks corresponding to SQL select, insert, update,
delete or the equivalent in some other DML).

2. “Business logic” tasks - tasks related to the actual logic of the application
(which vary widely from application to application, of course.) Quite a
few things might fall into this category, including

a) Carrying out the task(s) that the software is designed to do: displaying
information, recording purchases/reservations/..., etc.

b) Ensuring that the appropriate “business rules” are adhered too - e.g.,
for example, if a system is registering students for courses one
important “rule” that needs to be enforced is that a student cannot be
signed up for two different courses meeting at the same time (at all, or
perhaps without some sort of special permission)

c) Ensuring that users are properly authenticated if sensitive information
is being made available or data is being modified.

d) etc.

2

3. User interface tasks - tasks concerned with presenting information to the
user and accepting commands from the user. This could be via a
command line interface or some kind of dedicated hardware (e.g an
ATM), but is often done through a GUI.

B. While it is certainly possible for all three kinds of tasks to be done by the
same program, many applications make use of some variant of a client-
server model, where the database tasks are performed by a “database server”
and the user interface tasks are performed by a client computer - typically a
PC or the like. Where there is considerable variation is in the matter of the
placement of the business logic tasks.

1. Thick-client architectures:

Database Tasks

User Interface Tasks
 +
Business Logic Tasks

Client Systems

Server System

2. Thin-client architectures: in a thin client architecture, only the user
interface tasks are performed by the client. The business logic tasks and
database tasks are performed by server(s).

Often (though not always), the client is a web browser. In this case, we
need an additional server - the web server that delivers up html upon
request from the client. A couple of configurations are common:

C. It is possible to actually have three servers (though they might actually be
separate processes on the same computer). In this case, when the client
requests a computation, it is received by the web server and passed on to the
application server which in turn accesses/updates the database as needed
before passing a response back to the client via the web server.

3

This is often called a “three-tier” architecture.

PROJECT: Authors powerpoint

a) It is possible for the web server to actually perform the business logic
computation, contacting the database server as needed to access/
update the database.

This is often called a “two-tier” architecture.

PROJECT: Authors powerpoint

b) It is also possible for the database server to actually perform the
computation on request from the web server, using stored procedures.

D. Each of these Architectures has advantages

1. Thick client:

ASK

a) Much of the computation is done on the client systems, minimizing
load on servers

2. Thin Client

a) Easier to secure, since the business logic software is on server
systems. (Business logic software on client systems is more easily
attacked/spoofed; and the business logic software may need to contain
some sort of authentication information that should not be generally
available.)

b) Updating the business logic software is easier, since it resides only on
server(s).

4

E. Software support for the various architectures

1. Thick client

a) Business logic software needs to reside on the client. This can be an
actual program installed on the client which contains both user
interface and business logic code, communicating with the database
server as needed.

Example: The Video Store project in CPS122 could be configured this
way.

Example: Your programming project in this course will be configured
this way

b) Alternately, the business logic can be contained in code that is
downloaded when needed - e.g. a Java applet or Java web start. (This
is more appropriate when the client will run the system relatively
infrequently.)

2. Thin client

a) If a separate application server/program is used, typically, the URL
sent by the client tells the web server to send a message to the
application server that invoke the business logic.

b) It the web server actually does the business logic tasks itself, then one
of two approaches may be used:

(1)The web server may utilize small programs called “servlets”.
These are similar to applets, except that they run on the server
system, rather than the client system.

In this case, the business logic is a Java program that runs on the
server.

(2)The web pages themselves may contain embedded scripts that the
server executes while sending the page. (e.g. JSP, ASP, ColdFusion).

5

In this case, the .html file that the server sends the client in response to a
URL is actually generated from the html file stored on the server's disk.
Some of it may be literal text that is just passed through to the client,
while another part may be a script that the server executes whose output
is the html that is sent to the client (perhaps representing in html table
form the result of some database query.) As the server processes the
page, it recognizes the script portions by an appropriate tag.

That is, the business logic is written in some scripting or programming
language embedded in html.

PROJECT: Figure 9.9 from book

c) If the database server does the business logic tasks, then the the
business logic is contained in stored procedures / SQL modules that
are stored in the database. In this case, some of the business logic is
actually written in SQL, and the UI code running on the client invokes
these procedures through a connection to the database server.

PROJECT: Example of SQL create procedure from db2 examples

F. A key issue in a web-based system is the notion of a session.

1. The http protocol is a connection-less protocol. This means that no long-
lasting connection is established between the client and server; rather,
each request is treated as a separate operation, independent of all others.

There is a good reason for this in terms of the general architecture of the
web. Popular web servers may handle requests from thousands of
clients. Often, a client will request just one or two pages from a given
server, before following a link to another site. Keeping a connection
open consumes system resources, with no reason in many cases.

2. On the other hand, when the web is used for ecommerce or other
operations requiring some form of user authentication, a problem arises if
each access is treated as independent of all others, even from the same
client.

6

a) One solution is to require each access to include authentication
information (e.g. a username and password). This would either
require that the user be asked to supply this information for each
operation (which would be painful, to say the least), or the browser
would need to store the information and append it to each request
(which is not supported directly in http).

b) More typically, this issue is addressed by the notion of a session.

(1)When a user first accesses a site - or perhaps when the user
chooses an operation such as “login” - the user is required to
supply authentication information - e.g. a username and password.

(2)When the server receives such a request from the client, if the
authentication information supplied is valid, it creates a session
object which records the results of the authentication (i.e. who the
user has proved himself/herself to be.)

(3)Future requests from the same client are associated with this same
session object, and are handled based on the authentication
previously established for the session.

A common way to handle this is using a cookie - a small string
stored by the browser. (This is not the only way)

(a) A server can request a browser to set a cookie as part of its
reply to a request from that browser.

(b)A cookie always stores the url (or portion of the url) of the
server that set it.

(c) A cookie can be requested from the browser by the server; but
the browser will only send a cookie back to the url that set it.

7

(d)When a cookie is used as part of authentication, it typically
stores a session-id - a large, random number that the server uses
to locate the session object [using some sort of hashtable]
when subsequent requests arrive.

3. A crucial security issue arises with regard to sessions, though. Suppose a user
authenticates and a session is created. Now suppose a malicious user is
somehow able to “hijack” this session (perhaps by obtaining the session id by
sniffing a packet that is part of the communication between the true client and
the server) The malicious user would then be able to do anything the original
user was allowed to do. Here are some measures used to address this.

a) A session is typically associated with a specific IP number, and traffic
purporting to be from that session from a different IP number is
rejected. (But, of course, IP numbers can be spoofed)

b) Encryption of session ids to prevent sniffing.

c)The ability for the user to terminate a session by explicitly logging out.

d) Fairly short timeouts for a session, so that it is automatically
terminated even if the user forgets to log out.

III.Accessing the Database from Within a Program

A. Regardless of which architecture is used, it necessary for some portion of the
program to access the database. Unless the business logic is entirely
written in SQL, this will typically take the form of code written in some
other language executing SQL statements.

1. In a thick client system, this program may run on the client, either
standalone or as an applet or web start application.

2. In a thin client system, this program may run either on an application
server or within the web browser

8

B. In either case, as we noted at the start of the course, one of two approaches is
typically used to allow the application program to access the database

1. One approach - called dynamic SQL - involves the application program
generating SQL statements as character strings. Such a string is then
passed to the database, where it is interpreted.

a) In the case of Java, the technology used is called JDBC - Java
Database Connectivity. (You have used this for a lab in CS221.

b) A system that uses JDBC has the following architecture:

Java program
using JDBC

JDBC Driver
(specific to a
particular DBMS)

} Client or
application server
(as the case may be)

DBMS
Database server

(1)The Java program itself will work on any platform that supports
Java and with any DBMS that supports JDBC.

(2)The JDBC driver - a collection of classes typically furnished by
the database vendor - serve to translate operations in the Java
program into network messages to the database server in a form
that is appropriate to the specific DBMS being used. (Thus, each
brand of DBMS needs its own JDBC driver; but since the JDBC
driver is often written in Java, it could be platform-independent.
However, some drivers do use platform-specific native code, in
which case they are platform-specific as well.).

9

(3) Just to review, here is an example of JDBC code (from CPS221
lab).

PROJECT

(4)A SQL statement is constructed as a character string, using string
concatenation as with any Java string.

(5)A SQL statement is executed by passing it as a parameter to a
method of class java.sql.Statement, which in turn passes it to
the JDBC driver, which in turn passes it on to the database - with
the result travelling back to the program via the reverse of the same
path.

(6)The process of parsing the SQL statement is computationally
expensive. For some statements (e.g. those involving joins), some
effort may also be expended by the DBMS on planning a good
strategy for executing the query (we will see later in the course
how much of a difference this can make). This can also be
computationally expensive.

Because of the computation potentially involved in parsing and
strategy planning, JDBC incorporates the notion of a “prepared
statement”, which allows this work to be performed once - when
the statement is prepared - rather than each time it needs to be
executed. A prepared statement can have parameters, which are
values to be supplied when the prepared statement is actually
executed.

PROJECT - revision of JDBC to use a prepared statement

(a) Note the use of ? as a placeholder in original statement

(b)Note the use of an appropriate method (in this case
setString(), though there are many others) to set the
parameters.

10

(c) Note the use of executeUpdate() to actually execute the
prepared statement with the specified parameters., (There is
also an executeQuery() that returns a ResultSet, which is
used with select statements.)

c) JDBC is actually based on an earlier technology (originated by
Microsoft) called ODBC - Open Database Connectivity - which
supports database access by application programs written in a variety
of different programming languages through a library. (The
architecture is similar to JDBC, except for the presence of an ODBC
library between the program and the driver; for this reason, ODBC
drivers are platform-specific).

2. The other approach - called static SQL - involves the application program
being a mixture of SQL and some other programming language.

a) The language in which the SQL is embedded is called the host
language.

(1)The syntax details for any particular language are common to that
language - regardless of what brand of DBMS is being used.

(2)Of course, SQL itself is also (relatively standard).

(3)However, the actual implementation of embedded SQL for a
specific language/DBMS is typically furnished by the DBMS
vendor.

b) Embedded SQL implementations exist for a variety of host languages.
For example, db2 comes with support for embedding SQL in Java, C/
C++, COBOL, FORTRAN, Perl, and REXX.

c) We will be using this approach for the programming project in the
course. We will be using an approach to embedding sql in java known
as SQLJ.

11

(1) The "style" of SQLJ is a bit different from SQL embeddings in
other languages. It was developed jointly by 7 major software
vendors to tale advantage of some distinctive characteristics of the
Java language, such as built-in support for threading.

(2)Despite being an ANSI standard, SQLJ never really "caught on" -
in part due to lack of support being included in IDEs such as
NetBeans, Eclipse, etc.

(3)Nonetheless, we will use it for the second project in this course
because its style is very similar to SQL embeddings in other host
languages, and GUI development is much easier in Java than in
other languages typically used with embedded SQL.

d) Here is an example of embedded SQL code, using SQLJ.

PROJECT

(1)The overall program is a standard Java program.

(2)The program contains embedded SQL statements. In the case of Java,
the embedded SQL is bracketed by #sql { ... }. (Other languages
typically bracket the SQL by a construct like exec SQL ... ;).

(3) Information flows between the two languages via host variables.
A host variable is a variable in the syntax of the host language, and
can be used as such by the host language code. In the SQL code, it
is a marked as being a host variable by being preceded by a colon -
e.g. categoryName is a Java parameter that is used in the SQL
code under the name :categoryName.

(a) A host variable may serve to pass information from the Java
program into the SQL code (e.g. :categoryName).

(b)A host variable may serve to pass information from the SQL
code back to the Java program. (e.g. :checkoutPeriod).

12

(c) Not illustrated here - but also possible - is a host variable that
serves both purposes.

(4)A SQL statement is executed when it is encountered in the normal
flow of execution of the host language code - i.e. it is executed just
as if it were a host language statement. In fact, embedded SQL
statements can appear in host language control structures, in which
case they may be executed conditionally or repeatedly.

e) When a program uses embedded SQL, a more complex process is
needed to prepare it for execution. For example, here is the process
used by db2 for SQL code embedded in Java - referred to as SQLJ.
(The process details will vary from language to language and DBMS
to DBMS).

(1)The process begins with a source file that contains a mixture of
Java and SQL code (as in the example just projected). Such a file
typically has the file type .sqlj.

(2)The SQLJ file is processed by the sqlj compiler (furnished by
IBM), which splits it into two files:

(a) A “pure java” file that contains the Java code plus calls to SQL
procedures.

(e) A SQL module file.

For example, the following is an excerpt from the results of
invoking sqlj on the file projected earlier. (This excerpts
correspond to the routine we just looked at.)

PROJECT - Java code for example procedure;

(In the case of the db2 implementation of sqlj, the SQL module
code.is not created in a human-readable form, so I can't project
that)

13

(3)The “pure java” file is then translated by the standard Java
compiler into one or more class files.

(4)The SQL code is bound to the database, using a program furnished
by IBM. In effect, what happens is that stored procedures are
created in the database that correspond to the SQL code in the
original program.

As part of the translation process, the textual form of the SQL
statements is replaced by a compiled form. Thus, the task of
parsing the SQL and constructing an optimized strategy for
processing a query is done once at build time, rather than each time
a given SQL statement is executed (as is the case with dynamic
SQL).

f) When the program runs, it establishes a connection to the DBMS, and
then executes the SQL statements embedded in the Java code as they
are encountered during execution. An embedded SQL statement is
executed by sending a message to the DBMS requesting it to execute
the appropriate stored procedure that was created by translating the
SQL.

14

